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1. Introduction

An important goal of early %ision is the computation of a representation of the
visihle surfaces in an imaige. in particular the determination (f the oricntation of
those surl'ices as defined h. their local surface normals [Marr 1982. Irid% 19821.

Many processes contribute to achiesing this goal, stereopsis and structure from

motion being currently the most studied in image understanding. Three other

important contributing processes are shape-from-contour, shape-from-texture--
gradients. and shape-from-shading. Several psychophysical demontrations show

that shape-from-contour is significantly more powerful than shape-from-texture-

gradients IClark et. al. 1956, Gruber and Clark 1956, Braunstein and Payne,
19691. Similarly, Barrow and [enenbaum 11981, Figure 1.3 ff] suggest that
shape-from-contour is a more effective clue to shape than shape-from-shading.

In this paper we consider the computation of shape-from-contour. Figure 1
shows a number of shapes that are typically perceived as images of surfaces

which are oriented out of the picture plane. The corresponding (sets of) surface
normals (tip to tilt reersal) are shown to the right. It may be supposed (see

for example [Gregory 1973. pages 168ff]) that the slant judgements in Figure
I are largely determined by familiarity with regular shapes such as circles and

squares. Figure 2 strains that hypothesis (though Gregory proposes that we are

familiar with the shape of' puddles) and suggests that tie computation is based
on more general knowledge of shapes and surfaces. The method we propose

is based on such general knowledge. namely a preference fir s.mmetric, or at

least compact. surfaces. Note that the contour does not need to be closed in
order to be interpreted as oriented out of the image plane. Finally. Figure

3 shows that, in general. contours are interpreted as curved three-dimensional

surfaces.
We develop an cxtremuni principle for determining three-dimensional surface

orientation from a two-dimensional contour. Initially. we work out the

extremnum principle for the cases illustrated in Figures I and 2, that is, assuming

a priori that the contour is closed and that the interpreted surface is planar.
Later, we discuss how to extend our approach to open contours and how to

interpret contours as curved surfaces as shown in Figure 3.

The extremun principle maximizes a familiar measure of the compactness or
symmetry of an oriented surface, namely the ratio of the area to tile square of

the perimeter. It is shown that this measure is at the heart of the maximum

likelihood approaidl to shape-fi-on-contour developed bk Witkin 119811 and
I)a i,,. Janos. and I )unn I 9821. The nmaximum likelihood approach has had
some success interpicting irregularly shaped objects. The method is ineffective,

however, when the distrihution of image tangents is not random, as is the
case. Ior example. Ahen the image is a regular shape. such as an ellipse or

I



Figure I
Two-dimensional contours that are often interpreted as planes that are oriented with
respect to the image plane. The commonly judged slant is shown next to each shape.

Figure 2
Some unfamiliar shapes that are also interpreied a;s planes that are oriented with respect
to the image plane. [he shape on the left is from [(egor) 1973. fig. 10.91, the others
from (Witkin 1980. p 29 and 94].

a lmralloghqLu Our extrcmunm principle ifilciprets regular figures correctly.
We slio% lhl the maxinuuii likelihood incihliod appio\11,11s tihe extrellltil11
principle Ifor irregtular figuires: but that the imixiimium I like-lihood lnethod does
nlot Colylpiltte the corlect slant for an ellipe. \% tk 1 (1P)I. I ieti,. 51 pir ides
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Figure 3
Some shapes that are interpreted as curved three-dimensional surfaces.

empirical evidence that the maximum likelihood method computes a good
approximation to the perceivcd tilt but undcre.simales the slant. We prove in
Appendix A that the maximum likelihood method consistently overestimates the
slant of an ellipse. A more thorough investigation of the difference between
the Extreinum Principle and the Maximum Likelihood method is needed.

One class of figures that are readily perceived as lying in a plane other than
the image plane are skew symmetries, which are two-dimensional linear (affine)
transformations of real symmetries. Kanade 11981, page 4241 has suggested a
method for determining the three-dimensional orientation of skew-symmetric
figures, under the "heuristic assumption" that such figures are interpreted as
oriented real symmetries. We prove that our extremum principle necessarily
intcrprets skew symmetries as oriented real symmetries, thus dispensing with
the need for any heuristic assumption to that effect. Kanade shows that there
is a one-parameter family of possible orientations of a skew-symmetric figure,
forming a hyperbola in gradient space. fie suggests that the minimum slant
member of the one-parameter family is perceived In the special case of a real
symmctry. Kanade's suggestion implies that symmetric shapes are perceived as
lying in the image plane, that is having zero slant. It is clear from the ellipse
in Figure I that this is not correct. Our method interprets real symmetries
correctly.

First. we review the maximum likelihood method. In Section 3, we discums
sevcral previous extrcnium principles and justify our choice of the compactness



nicasuie. In Scctio n 4, we deri e the Iulhcniatics necessml tO CxtlelIli/C
the Ill.t N I ll'C , and lelate the CXITI'1111111 plilmtlple to the 1n,\ilnTIn

liklihlood mictlhod. In Section 5. %c i'cstigate Kinahde's woik on Skew
, nirnecl One approach to extending the extrenlin principle to interpret
ciir'ed surfaces, such as that shown in Figurc 3, is sketched in Section 6. In
the linal section, %c relate this work to the ps~chophysical literature on slant
estimation and image understanding %ork on shape from texture.

2. The Sampling Approach

Witkin 119811 has treated the determination of shape-fron-contour as a problem
of signal detection. Recently. )avis, Janos, and I)unn (19821 have corrected
some of Witkin's mathematics and proposed tw o efficient algorithms to compute
the orientation of a planar surface from an image contour. Witkin's approach
uses a geonmelric model of (orthographic) projection and a sttiistical model of

(a) the distribution of surfaces in space (statistics of the universe) and (b) of
the distribution of tangents to the image contour. We shall adopt the geometric
model, but dispense with the statistical model in favor of an extremum principle.

First, the geometric model. Assume that the image plane is horizontal with
coordinates (z,y) (see Figure 4) . To obtain a plane with slant a and tilt
r, we rotate (z, y) by r in the image plane and then rotate the image plane
by a about the new y axis. Assume that the coordinate framne in the plane
(a, r) is chosen so that it projects into (z, y). (In Section 4. we describe this
transformation more precisely. see also Davis. Janos. and l)Unn 11982. p3].)

Now suppose that a curve is drawn in the plane (a, r) and denote by 0 the
angle that the tangent makes at a typical point on the curve. Let a be the
tangent angle in the image plane at the point corresponding to 5. Then ae and

are related by:

tan(a - r) tan (2.1)

Cos a

We now turn to the statistical model, which consists of two assumptions
called isotrvj'y and independence. Isotropy reasonably supposes that all surface
orientations are eqully likel) to occur in nature and that tangents to surface
curves are equall." likel in all directions. More succinctly. it is a,,muned that the
quantities (0, a, 1-) are randomly distributed and their joint prohability density
function ("density") )(3,a, r) is given by [I)a\ is. Janos, and I)un. 19821:

)(13, c, r) = -2 sin a (2.2)

We assume thait tile ranges of tile angles are: 0 < < 5,0 < r < r, 0 <
4 < 7. Sillr,1, the dCnsit) of (0, r) is Pi\ en by :
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Figure 4
The geometry of orthographic projection. See text for details of notation.

I
D(o, r) - sin a (2.3)

The independence assumption requires that the image tangents {a:1 < i < n}
are statistically independent. That is, it is assumed tha tie tangent directions
at dilferent points on the image cur~e are independent. This is only true if"
the contour is highly irregularly shaped, or if the number of samples is ;mall.
In any case. the assumption of independence is an inherent weakness of the
sampling approach (see tbr example [Witkin 1981. p. 361).

Witkin [1981, p. 25 - 261 sho~s that the joint density finction D(a,or) is
given by:

1 sin cr cos or
D(a, = 1 2incos (2.4)

72 cos2(a - 7-) + coS 2 asin2 (a - )

For the conditional density D(alu, r) we find:

I 7) . (2.5)
Ir cos 2(a - r) + cos 2 asin(a - r)

)enote the sam1ple (a1 , 0 2 ,... an. ) by A (the sample is independent by
assumpton). It hs condilinal density
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D(A aD II(a1Ia, 1 (2.6)

By Baycs' formula we obtain

f fD(AIa, 7)D(c, r)dodr 27

Observe that thc numerator is independent of c and r. The sampling approach
takcs at random sample A and defines the most likely orientation of thle plane
(a, ) ito be that which extremlies D(o, TjA). Witkin 119811 quantics a and
T, and describes an algorithmn to find the maxii/iing (a), rk). IDavis, Janos.
and Dunn 11982] dc~elop a more efficient algorithm that first estimnates c and
T and then uses those estimates in a Newton iterative process. TIhey provide
e~.idencc that their method is more accurate than Witkin's. Curiously, however,
thc state fl~asis. Janos, and IDunn 1982. p 24] that "the iterative algorithm was
not used [in the experiments they report] because the intitial estimates (whose
computation is trivial) are very accurate and time iterative schemle often failed
to conserge to the solution".

3. Extrinuin Principles.

Brady and Horn 119831 survey the use of extremumn principles in image
understanding. [h le choice of' performance index or measure to he cxtremized,
and the class of functions o~ er A hich the extrcmi/ation takes place. arc justified
h appealing to at model of the geometry or photornetr ' of' image forming and
constraints such ats smnoothniess. For example. the use of extreimui principles
in suri~ace reconstruction is based upon surface consistency theorenis [Crimson
1981. 1982, 1983, Yuille 1983] and a thin plate model of visual surfaces [Brady
and I lon 1983. lerzopoulos 19831.

[here are several plausible measures of a curve that might be extremized in
oirder to compute shape-from-contouir. First. f K 2ds, Micre K is thle cur'.ature
of the contour, has beeni investigamted ats at cur'e of least ecrig for interpolating
across gajps in plano cur~cs II lormi 19811. Here %Ae seek at mneasure of at curve
th~t is extremni/ed % heni the [)ltne Containing tile cujr~c is slantcd and tilted
appro priatelyv. C t rar. to M hat appears to be at poptil ir belief', g i en anl ellipse
in tho imlage plane. f A 2d4,s is not cstreini/cd in tile pLimie that irins;forms the
ellipsc linto a 0circl. Appondix B contains a pWoof of this assertion. Since

ml~~\ie nornmil pe icced is sLa ted ci ides. Ace reject the squire cuisature
isaWuiable mneamsimrC.
Another possible measure is proiposed by lBarrom and 'Iencnibmuiii [1981. p891.

.W pm ifin.iit% (the torsionl is /crio), it reduccs to
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One objection to this measure is that it involves high-order dernatives of the
curve. This means it is overly dependent on small Kale behtiour. Consider,
for example, a curve thich is circular except for a small kink. The circular
part of the curve will contribute a tiny proportion to the integral esen when
the plane containing the curve is rotated. '[he kink. on the other hand, will
contribute an arbitraril.h large proportion and so will dominate the integral no
matter how small it is compared with the rest of the curve. This is clearly
undesirable. For example, it suggests that the measure will be highly sensitive
to noise in the position and orientation of the points forming the contour.

A second obiection to the measure proposed by Barrow and Tenenbaum is
that it is minimized by, and hence has an intrinsic preference for, straight lines,
for which dK/ds zero. This means that the measure has a bias towards planes
that correspond to the (non-general) side-on viewing position. These planes are
perpendicular to the image plane and have slant 7r/2.

We base our choice of measure on the following observations.

1. Contours that arc the projection of curves in planes with
large slant are most effective for eliciting a three-dimensional
interpretation.

2. A curve is forcshorted by projection by the cosine of the slant
angle in the tilt direction, and not at all in the orthogonal direction.

We conclude that three-dimensional interpretations are most readily elicited
for shapes that are highly elongated in one direction. Another way to express
this idea is that the image contour has large aspect ratio or is radially asymmetric.
The measure we suggest will pick out the plane orientation for which the curve
is most compact and most radially symmetric. Specifically our measure is

M (Area) (3.)

(Perimeter)
2 '

This is a scale invariant number characterizing the curve. For all possible curvcs
it is maximized by the most compact one, a circle. By compact, we mean most
radially symmetric. This gives the measure an tipper bound of 1/47r. Its lower
bound is clearly zero and it is achieved for a straight line. It follows that our
measure has a built-in prejudice against side-on views for which the slant is
ir/2.

In general. given a contour, our extremum principle will choose the orientation
in which the deprojected contour maximizes M. For example an ellipse is
interpreted as a slanted circle. The tilt angle is given by the minor axis of the
ellipse. It is also straightforward to show that a parallelogram corresponds to a
rotated squire. Appendix C discusses the interpretation of several simple shapes.
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In particular. ain ellipse is interpreted as a slanted circle, a parallelogram as a
slanted sqlare, and i triaigle as i slanted CtIiiilateral triangle. Il) Section 5 %c
extend the paralllogiamn resul to the more gencral case olf' skeed symietry.

Nke note that the quantity Al is commonly used in pattern recognition and
industrial vision ;%stens [Agin 1980. Pavlidis 1977. Iallard and Brown 19821
as a feature that mcasires the compactness of an object. Furtlhermore. we can
show that the measure M defined in Fq. (3.1) is at the heart of" the geometric
niodel in the maximum likelihood approach.

From Section 2. we see that the maximum likelihood approach maximizes
the product of a number of terms of form

A) Cos a (3.2)

cos2(at - ) + cos 2 asin 2 (a -

Differentiating Eq. 2.1 with respect to the arc length s, along the image curve
and sR along the rotated curve respectively we obtain

--- ds (3.3)
icR dsR f(a)

where KI and KR are the curvature at corresponding points of the image contour
and its deprojection in the rotated plane respectively. In fact. K, = dalds, and
r. = d,/3dsR. 'here is no a or 7 dependence in the numerator of equation
(3.3). We can write each term r, ds as (ds ds)/(p ds) where p is the radius of
curvature. Now observe that (p ds)/(ds ds) is just a local computation of area
divided by perimeter squared! Hence maximizing each f(a) in the maximum
likelihood approach is equivalent to locally maximi/ing area over perimeter
squared. In section (4) we will examine this connection more rigorously.

Finally we note that the area. as well as the perimeter, can be obtained by
an integral round the contour. If n is the normal to the curve then it is a
straightforward application of Stokes' Theorem to show that

(Area)n = r dr, (3.5)

where (Area) is a scalar quantity, and r is a %cctor coordinate system in the
plane of the figure. This formula simplifies the calculations and means the
perimeter and the area can be computed simultaneously.

4. Extrciniiing the Mcasure

We now " rite don t the measure for a cur% e with arbitrary orientatian and then
extren i/c with respect to the orientation. Let the unit nornals to the image
plane and the rotated plane be k and n respectively. [he slant a of the rotated
pl|ne is giken b the scalar product



9

cos r k.n (4.1).

I.et F, and I', he the co ntour in the rotated and inage planes. A %ector r in
the image plane satisfies r. k = 0, and is the projection of' a %ector % in the

rotated plane that satisfics n = 0. The projection relationship betwccn and
its image r is defined by:

r= k X (v X k) = v- (v. k)k (4.2)

n x (r X k) (n. k)r - (n. r)k (43)

(n. k) (n. k)

where X denotes vector product. Now rR and F have (vector) areas AR and
A, given by

AR = 2 RvXdv (4.4)

Al = -2 r X dr (4.5)

Observe that the area vectors have the same direction as the nonnal to the plane
containing the area. In particular. AR is in direction n and A, is in direction
k. Substituting Eq. 4.3 into Eq. 4.4 and using Eq. 4.1, we find

AR A,+ k x (n X A1)

(n. k) (4.6)
_ (k"A,) n

Cos a

It follows that

IIARll = IIA l (4.7)
cos a7

(We recall that the range of a guarantees that cos a is positive.

The perimeter lengths PR and P, are given by

PR = f IlI (4.8)

P = 11Id.II (4.9)

Substituting Eq. 4.3 into Eq. 4.8 gives

PR f (dr)2 + nk) (4.10)
,.(n k)20
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In general there is no simple relationship hotecen the perimeters analogous to
Eq. 4.6 hteeen the areas. Ne'ecnheless. by I-q. 4.7.

IIAR II IA 1 (4 1
- - = i Coga (4.11)

and so our extremum principle is equivalent to extremi/ing cos OPR, which
Ae %rite as

J~f { (nk)dr' + d} (4.12)

We extremize this with respect to the orientation n of the rotated plane.
maintaining the constraint that n is a unit vector by a Lagrange multipliLr A/4.
This gives

k ((n k)dr2 (n .d)2 (n- 'k)2dr2 -(n ' dr)2

~~~( ~j~~r k) ) (n -k) 2

+2 (nkd2 + (n 'drY (n-k)(n-dr)dr (4.13)

F'aking scalar products of Eq (4.13) v'ith k arid n. respectitely, gives

0 - (n. k)A

((n. k)dr2 + (n.dr)2) - (n L) 2dr2 - (n dr)2  (4.14)

(n -k)) (n -k?2 (.4
0=A

2 + (n'-_dr)2 -- (n 'kj2dr2 + (n ' dr)2

(n -k ( k)dr + __ __.(4.15)

We use Eq. 4.14 to remove the integral coefficient of k in Fq. 4.13. allowing
us to express -q. 4.13 as a sum of the second integral and k X (k x n) times
A. We now use Eq. 4.15 to eliminate A from this nevk Corm of Eq. 4.13. We
recall that the unit tangent t is defined by

dr

ds'
vkhere s is arc length along the contour. It Follow's that

dr = (ds.
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Recalling that (n k) cosa. we find

Co{Co r + (nt)} ( n) dr k -x k x n)j {Cos a + (n.I)}ds

,Ahere t = dr/1drl is the unit tangent to the iniage contour.
I.et the unit %ectors in the r and y directions in the image plane he i and j

and the normal to the image plane k. B y definition, cos a = k k. The tilt r
is defined by

i.n
cosT = -- (4.1)

sin a
sin r* =-- n (4.18)

The tangent vector t and the normal n can be written:

t = cos cd + sin aj (4.19)
n = sinacosri + sin asin rj + cosak (4.20)

where a is the tangent angle in the image. We now form the scalar products
of Fq. 4.16 %ith i and j to obtain (%ith appropriate cancelling)

2 f (cos2 a + sin 2 ocos 2 (a - r))- 1 eos(a - T)cos ads

Cos rT (Cosa2  + sin 2 acos2 (a - r))Ids

and

2 y(cos 2  + sin 2 acos2 (a - r))- cos(a - r) sin ads

= sin r J(cos2 a + sin 2 Ccos 2 (a - r))ids(

we can rewrite these equations, after multiplying by factors of ± cosr and
± sin r, as:

2 f (cos' a + sin 2 Ccos 2(a - r))-- cos2(a - r)ds

= f (cos 2 o + sin2 Ocos 2(a - r))ids (4.23)

2 (cos 2 a -4- sin 2 Ocos 2(a - r))-i cos(a - r) sin(a - r)ds
=0 (4.24)
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We use l-qs. 4.23 and 4.24 in Appendix 1) to determine the cxtrenii/ing
orientation for a skew symmetcry. We can rcewilic thesc equations in the Form:

ao I- fbos2 o + sin 2 Ocos 2 ( - r))' ds) 0 (4.25)

a ( I (Cos 2a + sin 2 acos 2(a - r)) ids) 0 (4.26)

to emphasize that they correspond to extremizing with respect to a, and r.
We can imnplemient the extren'1uin1 method dirctly from Eqns. (4.25) and

(4.26) by quantizing the tangent angle ai, slant a,, and tilt r-k. replacing the
integral by a sum. 'Ihis gives good results, e~en though we use fixed point
integers in our edge finder. A multi-level search speeds the algorithm by a
factor of ten. For large slant the ratio of the greatest to least value of the
expression is large, and the result is numerically well-condlitioned. For smallcr
slants (less than about 45 degrees in the case of an ellipse) dhe ratio is small
and the result poorly conditioned. so that round-off errors can be significant.

Toa conclude this Section. we show that these equations are similar, though not
identical. to those obtained by the maximum likelihood method in the limit as
the number of sampled tangents tends to infinity. I o see this we recall from FA.
2.7 that this method in'~ol~es extremizing !J(Aja, ) with respect [to a and r.
Since the denominator is independent of a and T, this amiounts to extremizing
D(Alu, T)D(a, r-). This is the same as extreinizing log D(AIC, 7-)D(a, T). Using
2.3. 2.5 and 2.6 we obtain:

E = n log cos a + log sin a - log(COS2(a, - r) + Cos 2 csin2 (ak, - I)

(4.27)
where we have ignored factors of ir which will %anish on differentiation.
D~ividing E by n and Liking the limit as n tends to infinity gives:

F = log cosa f dr - f log(Cos 2(a - -r) + cos 2 asin 2 (a __ 7T))dr. (4.28)

U.sing the identity:

Cos 2( )I c sin2 ( 2 ) co 2 a±snacs(a __ r) (4.29)

gives

F log cos afdr - Jlog(cos 2 a-4- sin 2 cos 2 (a - 7r))dr. (4.30)
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1 his fo1 10Ia is ,milar to, I qs 4.25 and 4.26. I hus %c CXpc .t the I l-treMum

Wethod to wL'e 'imilair rcuhs to) the Simplinyw Method Mihen the uinoltr is

SLtrflk iiCI) I I. IILg i. I lh] I kc ,e I c an llo 1iiall 111,1t lh S.i11rpling %IChod

and the 1xlicmurUm Method arc nt cquivalent. In Appemdix A \kc shim that the
Sampling Mthod ,n ercsiimales the slant of an ellipse. lhe pretmse discrepanc*v
betwcen the mcthtlk. i d its pr,ctical consequince ir cipinl p i trg shape froim

contor is currently under mxestigation.

5. SkcA S~tmetry

We now consider a more general class of shapes for which the maximum
likelihod approach is not effective. Kanade 11981. sec. 6.21 has introduced
skew svottnctries, % hich are two-dimenional linear taine) transformations of
real symmetries. [here is a hijecti~e correspondence between skew symmetries
and images of s.mrnetric shapes that lie in planes oriented to the image plane.
Kanade proposes the heuristic assumption that a skeA s vmmetr] is interpreted
as an oriented real symmetry, and he considers the problem of computing the
slant and tilt of tie oriented plane.

l)enote the anles between the x-axis of the image and the images of the
s'mmetr% axis and an axis orthogonal to it (the skewed transverse axis) by af and
0 respccti~ely. The ,rthogonalitv of' the sytirnetrN and trans\erse axes enable
one constraint on the orientation of' the plane to he den, ed. Kanade uses
gradient space (p, q) 1) lorn. 1977, lrad%, 19821 to represent surface orientations.
fie sloms [Kanade 1981. p. 425] that the heuristic assumption is equivalent to
requiring the gradient (p, q) of the oriented plane to lie on tie hyperbola

p~cos2(--) qa2s 2 (a ) COS(c -) (5.1)

2 2

where

( s ( -2 ), (5.2)

q = -psin + + ) qCOS +~

Kanade 11981, p. 4261 further proposes that the vertices of the hyperbola.
which correspond to the least slanted orientation. are chosen within this one-
parameter Tiiril. . This proposal is in accordance with a heuristic observation of
Steens 119901. In the special case that the skew symmetry is a real symmetry,
that is in the case that a -- 3 =- ±r/2. the hyperbola reduces to a pair of
orthogonal lines (Kanade 1981. page 426 passing through the origin. In such
cases the slant is /er. In other words, Kanade's proposal predicts that real
Snmi llili'iki , ire nah).l inllelipie d is ly ilig In the ill ig' pl, , and lc1ike
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and

P - a)2 2. (5.4)

From Figure 6b we find

A', = 2al cos a + (b - a)l cos a

A, cos a

and

P'- +2 osa + (b-a + I sina) + + ao-a-(b-a - 1sin a)2 .

(5.6)
We need to show that

cos, 1
< -. (5.7)

p,2  p 2

This is equi'alent to showing

(2 cos a - 1)(12 + (b - a) 2)

< {12 + (b- a)2 + 2(b - a)lsin a} {' 2 + (b - a) 2 - 2(b- a)lsina}.

(5.8)
'Ibis condition clearly holds for 7r/2 > a > 7r/3. Assume therefore that

0 < a k< 7T/3. Squaring both sides of (5.8), we see that thc condition is
equivalent to

14 + (b - a)' + 12 (b - a)2 (2 + osn a ) > 0. (5.9)
cos2 a - Cos a

On completing the square we see this always holds provided

4 cos a - 1 - 3cos2 a>0 (5.10)

This is so provided j < cos a < 1. that is for 0 < a < . It follows that the
ratio of the area to the perimeter squared is maximized for each region when
a= 0.

We noA partition the shape into n regions as shown in Figure 5. l.ct the i'
block have area A, and perimeter P, whcn the skew angle is a, and denote
the area bh A, and the perimeter by P, when a is zero. It Ibillows from the
above results that

A' = A, cosa (5.11)
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0 b/

I ,b

(0) (b

Figure 6
a. A basic region before skewing it. b. The result of skewing the region shown in (a)
throlgh angle cr.

and

A' A,
'2 <  A, 

(5.12)

We conclude from |:qs. (5.11) and (5.12) that

p,2 > p, 2 Cosa. (5.13)

Hence we obtain

p12 > cosa p 2  (5.14)
t~l t=1

X, = cos t . . (5.15)

It foIllows that

, a < (5.16)

and f~ing the limit as n tends to infinity shows that our extrenmm principle

interprets a skc%, s, mnictry as a oriented real spumlnctry.
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6. Strategy alnd .Sc, silihity

In Section 3., wC suggested that radiall\ asxmmetric. elon ated. or non-compact.

contours mo,,t readilh elicit three-dimensional interpretations. Wc then proposed
a compactness icastire A/1, 2. and suggested that perceived surilic orientation
corresponds to the slant 'and tili thai maximi'e the measure. Wc briefl discussed

the role of extremlumn prinuciples in computer Nision (Brad% and I orn 11983J
present a fuller discussion), and critici/ed Barrow and 'I enenlmtim's measure on
the ground,; that it is higlehh scnsiti~e to noise. In Section,, 4 and 5 we analyied
the extrernum principle and showed that it corresponded closely to human
perception of oriented planar contours, and that it interprets skew symmetries

as oriented real symmetries.
In this Section we return to the discussion in Section 3. concentrating on two

additional questions concerning our measure. First. we ask shcther there are
specific reasons why a %isual system should adopt the strateg) of extremizing
our measure. We suggest that the extremum principle not only detennines the
orientation of the %iced cur e. but provides an estimate of the stability of the
interpretation. We relate this to the idea of general %iewpoint. Second, we
sho% that the compactness measure is relatively insensitime to noise and to the
scale at which the inage is sampled. 'To this end we consider two cases: (i)
adding a sinus.oid to the contour. (ii) assuming that the image can he modelled
in temis of fractals IMandelbrot, 19821.

Vieing position and stability

Consider viewing a gi~en planar curve from the hemisphere of all possible
directions. Consider further the way the image changes when the viewpoint
is shifted slightl\. A smooth curve will hardly change with a slight change of
viewpoint from most siewing directions. We call these viewing directions stable

viiipoin s. Stable viewpoints can be grouped into regions whose boundaries
correspond to % iesk points where the contour changes rapidly ftr a slight change
of vicwing position. 'These stable regions will be quite large for images of
smooth planar curses and smooth curved surfaces. We suggest that image
contours are interpretated as curves that are viewed from stable %iewpoints.
This is the essence of the general viewpoint constraint in computer vision. We

are able to estimate how stable a given viewpoint is.
One way to find stable viewing positions is to define a similarit) measure for

viess points and then find the extrena of this measure. Sutheiland [personal
comnunicalioni has proposed A/I 2 as a similarity measure, based on empirical
studies of animal perception. If this is correct. extremizing A/I'2 corresponds
to finding the stable % ic ing positions of a contour, and, as il rcult, the stable
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interpiretations of a LOntour, defined to be tho,se hich osCr crs at general
positions are inoMt likcly t see. This StLggC,,s that ',nlllin Plcneral xicw ing
position correplnds to assurniiig interprctations alound " hich OUr compactness

nieasire is extremi/ed and %&here it varies slow]%.
We illustrate this idea by considering an ellipse. -or an ellipse the stahle

%icwing position corresponds to interpreting the ellipse as an oriented circle.
Eivcn if the circle is slanted b) as much as thirty degrees, the %alue of A /12

hardly changes, as our algorithm demonstrates, and so the circle is a stable
interpretation. If the algorithm is applied to an ellipse with large eccentricity,
corresponding to large slant, A/P 2 changes rapidly for slight changes to the
viewing position. Sy if we look at an ellipse from all possible xiewing angles
it is most likely to appear as a circle and so interpreting an ellipse as a slanted
circle is a good strategy.

T'hese results are preliminary, and they will be rigorously developed in a
further paper.

Sensitivity of the compactness measure to noise

The second question concerns the sensitivity of the measure to noise and to
the scale at which an image is sampled. Since our measure involves fewer
derivatives of the contour than measures such as that proposed by Barrow
and Tenenbaum. it should be relatively insensitive to noise. Although our
present algorithm and the sampling method are essentially equally sensitive, it
is possible to develop a less sensitive algorithm to implement our measure. The
sampling method inevitably involves calculating tangents, howe~er, and hence
is inherently sensiti'e to noise and scale. For example if the image contour
is continuous, but not differentiable, the sampling method cannot (strictly) be
applied. Similarly if the orientation of the tangent to the contour has a large
high frequency component, the sampling approach will be very sensitive to
noise.

Consider the sensitivity to noise of the extremum principle. Clearly, the
perimcter P depends on the scale at which the image is %icked. %hile the area
A is much less dependent. It follows that the ratio A/I' 2 varies with scale.
If a sinusoid is added to a smooth contour. for example, the area will remain
approximately the same but the perimeter % ill change sigmificantly. 'Ibis does
not imply. howeer. that 1he exlrema oft,'/l, 2 %ary A it scale. For example, it
is easy to shoA that if a sinusoid is addcd to the contour, the cyiretnum of the
area over the perimeter squared is eflecti ely unchanged.

Similarly. suppose that the image can i.e approximated b a fra.tal IMandelbrot,
19821. If w ineasure the image at a small fiactal scale constant 1. the perimeter
%ill he given by
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%%here F is independent of 1. and of > I is thie fractal dimeins io n. Pill'ided 1 is
simall. the ailtie or A is csseiitiaMl~ independent Of 1, sOIiLO the fractal [ends to at
limit contour. % itl inite area, as' I goes to zero. NoA wc cxtreini/e A/1, 2 for
all C0111t1.10 rsNh iLhI can he proJected into the imiage contour. I his is equivalent
to extrrnhi/ing log(A4/P 2 ) %khich, using (6.1). wc write as

,F;-) =log A - 2 log F - 2(1 - d) log 1. (6.2)

We now extrenhi/e this o'cr a and 7T (Fqs. 4.24 and 4.25), and note that thc
tci insoling I is independent of a and r and disappear. It follows that the
extrema of A1f' 2 are independent of the scale of %iewing for an image that
can be approximated by a firactal.

7. Interpreting iniage contours as curied surfaces

Figure 3 shows at number of contours that are interpreted as curved surfaces.
In this section we discuss one method for extending our extremutm principle

to this general case. [he kes obsers ation, its it was for Witkin 119811. is that
our method can he applied localls. To) do this. we assumne that the surface is
locally planar. At the suirlice bounditr. corresponding to the deprojection of
the image contour. the binormial coincides w~ith the Surface normal. T[he idea
is to comrpute ia local estimate of the surface nonmal by the extremumn principle
described in the Pre'iOUS sections and then to use an algo.rithti. such as that
des eloped by I civopoulos 1 19831. to interpolate the surface orientation in the
interior of the surtace. 'I hie method is closely related to that proposed by Brady
and Grimson 119811 tir perceising subjective surfaces.

The main question concerns ho~k to apply the extrernumn principle locally.
We are cuirrentl% insestigating the following, approach. Consider the circle of
Curvature to the space Curve that is the deprojection of the contour. One way
to define the circle of curvature is a,; the best fitting local circle through thrcee
points (or inure if one assumes noisy data and makes a least squares estimate)
on the spatce curve near the point in question. The circle of curvature projects
into an ellipse. We conmpute the best fitting ellipse at each point oil the image
contour, and comipute from it at local estimate of the surface irientation by
finding the slant and tilt of the corresponding circle, interpreted ats the circle
oil curtvature. It is easy to show that so long ats the surface foreshortening is
diffkrcnriablc. this is at good estimator of the circle of curvature and hence of
the i lc~il surface normnal.

It requires 5 pai'mi1eters to define ain arbitrary ellipse. Computing the
bcest fitting ellipse in the general case is at complex nonlineair problem best
dlippoai~hed using at iuitierical dc-,cent methiod, thoughl se~craml alooridhins have
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bcen published reccenth flor comptiting best litting cllipses IlBooksci 1979. Agin

1981. NakaVt awa and Rosenf ld 1979. Sanp,, 1982J. If we a-,,umc that the

normal to the space cur-e is not significantly h rehortened. we can c0tiipilte

the ellipse center and major axis from the cursatuie of ie contour at the point

in question. The slope of the conlour at that point also defines the orientation

of the ellipse. lea\ing a much simpler one-paraiieter problem.

We note that perceptually the strongest local cues to surface orientation

correspond to points of high cursature. I his is colistcnt w ith our method of

locally estimating surface orientation by fitting local ellipses._ Recall that our

compactness measure \as inspired by the observation, for example on ellipses,

that large slant is an effecti\e cue to surface orientation and in the case of

an ellipse this produces points of high cur\ature. In fact, we can show that

numerical conditioning of the estimator of slant increases monotonically with

the slant. Conversely. for straight line portions of a contour, the curvature
is zero, and the surface is locally planar. Hfence surface orientation does not
change along the length of the straight portion.

One issue that remains to be studied is the interface to the surface reconstruc-
tion algorithm. Consider the image of a triangle shown in Figure 1. There
are. in general. three different perceised orientations of the triangle cortespond-
ing to propagating the interpretation of each of the (high curvature) corners.

Adjacent corners giNe inconsistent information, and so it seems necessary to use

a labelling approach such as that proposed by tucker, il1nucl. and Rosenfeld

119771.

7. Related Aork

Gibson 119501 has argued that surface orientation is directly determined by

certain "higher order sariables" in the proximal stimulus array. What exactly
constitutes a "higher order %ariable" has been the subject of extensive debate.

Nevertheless. Gibson and his followers hase proposed sc\cral such, especially
for optical flow and texture gradients. Flock 11964. Flock et. al. 19671 have

adopted a Gibsonian perspecti\e on the judgement of slant in texture gradients.
ie has introduced a "higher order \ariable" optical slo (actually "optical

theta" in the original) as a possible basis for mnonocular slant iWrception i[lock
1964. 1 q. 51 or. at least. as a discrininant for planarit \. Fhocks work implicitly

assumcs plaimrity ([Hock 1964, p. 3811. and it assumes that the tilt direction
has been co mputed pre\iousl\. In faict. there are many ai,,tMlptiions in Flock's

paper 0lreemnan 1 1965. p. 5021 counts 13). Nloreo\cr. ,,\'ci a studies [Clark
ct. al. 1956. (huher ,ind (Uoik 1956, I:reci,m 1965. hrauistcin and Payne

19691 hae ,hown that the determination of surfiice oicntation from texture

gradients. for exiinple using optical slant or as in Ikcuchi 119831. is less elredtive

thin it, detcrmination Ioin bounding contour.
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Figure 7
a. A box-like figure typical of those studied by Attneav'e and Frost 119691. b. A sheared
box.

Attnea'e 11972. see also Attncavc and Frost 19691 describes an approach
to dletermining surface orientation that has similarities to that dcvcloped here.
First, he argues for a Praegnani thcory of peceCptionl. which stresses economy

principics in perception. ['his has meant diffecrnt things to different researchers.
[he Gestalt psychologists explicitly notcd the link bctwecn Pracgnanz and
minimit.ation principlcs (for example the soap btubble) in mathematical physics.
Attnea~c [1972. p. 285) suggests that such minima may be computed by "hill--
climbing techniques". The extremum principles disc-usse'd in Section 3 of this
paper and surveyed in [lBrady and I orn 1983. Grimson 1981. 1982. 1983, and
1ler7opOUlOS 19831 can be considered to be more sophisticated formali7.ations of
similar intuitions.

In fact. Attnecave adopts Hlochberg's formulation of the Praegnanz theory as
the tendency to keep) diflerenices to a minimum. In particular hie considers
three-dimensional interpretations that equali/e one or more of angles. lcngths
of edges. and surfaice slopes in figures Such ats Figure 7a. The more of these
that tire in faict equalized in a partictular three-dimensional interpretation of an
image. the more likely that interpretation is to be chosen. In fact, thle extremum
principle developed ini this paper will interpret Figure 7a correctly. It will also
determine the shear in F~igure 7b.

Second. Altncawe 11972. IVig. 41 considers the judged orientation of' rhombus
figures (w~e Appendix 1) below fior analysis of this case by our extremum
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principle.) Surface orientation can he judged reliably fbr such shapes, more

reliably in fact than for the box figures shown in Figure 7. so long as the
s nmnetries of the Ilrohbus do not align with the horizontal fand ertical. It is

well known that the horizontal and vertical are important for shape description.

(see for example Brady 11983] for discussion). Note that surface slant is

consistently underestimated.
In order to express depth constraints. Barnard 119821 and lkeuchi 11983]

have proposed alternative projections to orthographic projection used in the

development in Sections 3 and 4. The methods we have de eloped extend

straightforwardly to these alternative projections.
Barnard [1982] finds surface orientation from vanishing points of families of

parallel edges using central or perspective projection. He considers the projec-

tion of an angle, and, after the fashion of Hochberg and Attncaxe. heuristically
assumes equi-angularity to arrive at a three-dimensional interpretation of a

triangle. As noted in Appendix C. our method dispenses with the need for such
a heuristic assumption. Similar remarks apply to Barnard's study of curvature.

Ikeuchi [1983] proposes a method for determining surface orientation for a

surface that is covered with uniformly repeating texture elements. He assumes
that the surface element corresponding to the texture element is planar. Most

critically it is assumed that ie shape of the texture element is known a priori.

For a particular slant and tilt, the orientation of the projection of the known
figure changes. Ikcuchi proposes a measure that is superficially similar to the

symmetry measure in Section 4 to determine the slant and tilt of a texture

element.
Olson [1974] has studied a version of Ames' trapezoidal window illusion.

Surface slant is judged more accurately when the stimulus is ino% ing consistent
with the static three-dimensional interpretation than in the purely static case.

Similarly. Wallach. Weisz, and Adams 11956] have shown that when an ellipse

is rotated in the image plane about an axis passing through its center and
normal to the image it is perceived as a spinning oriented circle, like a settling

spinning penny. [ he instantaneous surfacL orientation of the oriented circle
can be computed by our method. ltildreth's forthcoming Phi) thesis on the

perception of motion discusses the rotating ellipse and proposed a theoretical
explination of human perception of it.
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.%ppeindix A: The oa'iuiu likUlihood method applied to an ellipse

FqLd(iOn (4.30) gi~es the ,alue F of he logarithm of the Maximum likelihood
estimator for surface orientation:

F = logcoso f dr- log(cos 2 c + sin2 ocos 2(a - r))dr. (A.1)

In this Appendix we investigate the slant computed by the Maximum Likelihood
method for the ellipse

+ Y .(A.2)

It is convenient to use the standard paramcterization.

x = acosO

y = bsin0, 0 < 0 < 2r (A.3)

dr = (a2 sin + b2 cos 26)fdO

Pending a more thorough analysis, we assume that the tilt r = 7r/2 is computed
correctly by the Maximum likelihood method, and restrict attention to slant.
Witkin 11981, Figure 51 and our own computational experiments suggests that
this is reasonable: in any case, if it is not so, the inequivalence of the Maximum
L.ikelihood and Extremum Principle methods would he assured. Without loss
of generality, we assume that a > b. and denote a/b by X > 1.

Since r = 7r/2,

Cos 2 a
1 + tan 2 a

a2 sin 2 0 ' (A.4)

a2 sin 2 6 + b2 cos 2 9

since tan a = dy/dz. Also,
71.

sin(a - 7) = sin(a - -) = - cosa, (A.5)
2

and so Eq. (A.1) reduces to

F = logcosaf dr- flog(l - Cos 2 sin 2 a)dr. (A.6)

We are interesled in extrema of F. and so we consider dP/dc, which we
,rite
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dF [ a2sin 2 0cos2 - b2 cos 2 0
cot .. . . ..f dr, I < X (A.7)

do a2sin2 0cos2o - - b2 cos 2

Suppose that the Maximum Likelihood method is extrcmi/ed at a = a'.
The slant that is necessary to interpret the ellipse as a circle is givcn by
cosa = 1/X. 'Tbe Maximum Likelihood method overestimates slant if and
only if a' > cos-(1/X), which is if and only if cosa' < I/X. This is true
if dF/da 3 0 for all a such that 1 < Xcoso < X. I)cnote Xcosa by M,
so that 1 < j < KX. Substituting in Eq. (A.7) and changing tie limits of
integration, we find

dF = 2b J 7 M 2 sin 2 o 0- cos 26 (X 2 sin 2 0 + cos2 0)id0 (A.8)

do L2 sin2 0 + cos 2 0

We now split the range of integration into four equal intervals of size ?r/4.
With suitable changes of variables to bring the intervals of integration to [0, -1],

we find

dF 4 2 COS2 6 _ sin 2 9 (X2 cos 2 0 + sin 2 O)j

der c 2 cos2 0 + sin 2 o (A.9)
P

2 sin 2 0 - cos 2

2 2 0 + cos 2 6 (X sin29+cos
28)2dO

Over the range of integration. cosO > sin 0. Algebraic manipulation of Fq.
(A.9) shows it to be greater than zero, so that it is certainl) not zero. Hence
the Maximum Li!elihood method overestimates the slant.

Ul . . . li l l . .. . . .. nrb l I l 1 -- I I I - I I I I Ii , , -. . .
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Appendix It: Wh3 ,quare cirature is inappropriate

In section 3 we rejected the measure

F f ds (3.1)

because, despite popular belief to the contrary. it does not interpret anl ellipse

as a circle. In this appendix N&C substantiate that claim.
Consider the ellipse defincd by Eqs. (A.2) and (A.3). The cur\ature K of the

ellipse is given by

2 
d2 r 2

K 2( B .2 )

a2 b2  (B.3)

(a2 sin 2 0 + b2 cos 2 0)3

,Ahere s is the arc length. Substituting Equation (11.3) into (11.1) we have

2 7 a2 b2

F(a, b) - J - 2 20 dO (B.4)
(a2 sin 2  b cos2 0)

Suppose. without loss of generalit\, that the ellipse is in the image plane and

that a > b. Suppose further that the square curvature performance index (1.1)
is correct and interprets the ellipse as a circle lying in a phne that is slanted

%ith angle a to the y-axis, where

b = a cos a

Equivalently. if 'we set b' b/rosa, the measure will choose a such that

Y = a. Hence if we write b = Xa. and consider F(a, b) to be a function of
X,. the measurc should be extremi.ed by X = 1. We will no\& show that this is
not the case.

1,'(X)= ao (2 d (B1.6)a (si n2 0 -+1 X2 Cos2 0)j

Ditferentiating this with respect to X gives

OF 1 f02w 2X sin 
20 -3X 3 cos 2 0

ox n 10 - --- dV (. 7)
0 20 +X 2 Co2
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Evaluating this expression at X = 1 gives

. . . ( 2 s in 0 - 3 c o s ) d O
OF 1 ai

~i a ~sin e~c~~ede(B.8)
a

Since the partial of F with respect to X does not vanish when X is equal to
one, the circle does not extremize the ellipse for the square curvature measure.
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Aplendi% (': The inlerprciation of some simple shapes

In this appendix we show that our method correctly interprets a number of
simple shapes. namely an ellipse. a parallelogram, and a triangle.
El:lhpse

Suppose the ellipse is given by equations (A.2) and (A.3). It is casy to show
that the area A and perimeter P are given by

A - irab

P -- 2 (a2 sin 2 0 + b2 cos 2 0) dO  (C.1)

Maximizing A/P 2 is equi~alent to minimizing P//A. We set b = Xa, (X is
the eccentricity of the ellipse,) and define I'/,V - f(X). We find

1 r 2 osin
S=f l sin + X (C.2)

By the same argument presented in appendix B, the ellipse will be interpreted
as a circle proided X = I is a minimum of f(X). Changing the %ariable of
the integral to € - 0 + 1 we find that

which implies that X = 1 extremi/es f(X). It is also clear that extrema occur
in pairs of the tvirn X, I /X. Furthermore. both are stationary points or one
is a maximum and the other a minimum. Observe that f(X) tends to infinity
as X tends either to zero or infinity. It follows that a sufficient condition for
X = 1 to be a global minimum is that all pairs of extrema be stationary points.
Suppose that this is not the case. and let X0 be the smallest extremum that is
not a stationary point. Since f(X) tends to infinity as X tends to zero, X0 must
be a minimum and l/XO a maximum. But 1/XO is the largest non-stationary
extremum. and so. by the same argument as above, it must be a minimum.
This contradicLion establishes the result.

Parllelogram and triangle
In section 5 we showed that a skew symmetry is always interpreted as an
oriented siumetr) by our method. In particular. a parallelogram is interpreted
as a rectangle. By the same argument, a rectangle is a skewed symmetry of a
square. Itence our mcthod interprets a parallelogram as a square.

Similar reasoning shows that a triangle is interpreted as a skewed isosceles
triangle, which is interpreted as a skewed equilateral triangle. 'Tie axes of the
skewed symmetry join a vertex to the midpoint of the opposite side. Hence
our method interprets a triangle as an oriented equilateral triangle.
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Appendix I): The slant and tilt of a skened symmetry

In this appendix we calculate the slant a and the tilt r that correspond to the
oriented real symmetry that is the interpretation of a skewed s)mmetry whose
skew angle is 6.

As a simple, though instructive, example, consider a rhiombus of side a and
included angle -1 (Figure 8). To find the extremizing tilt, we substitute the data
from Figure 8 into Iq. 4.24, and find

sin r cosr - sin(r --y) cos(7---y) 0 (D.1)
2 2 f 2( 2,r)

{1- sin2asin r 1{1 - sino sin2 (r -

We can rewrite this in the form

{cos 2( -r - -Y) _ cos2 r {Cos 2(r- y)+ Cos2 r

+ (1 - Cos 2 o)(1 - Cos( - os 2 r) - 1}
=0

(D.2)
We assume first that the first factor is zero. It follows that

cos(,r - -y) = ± cos r (D.3)

and so

-y - 2r = nir. (D.4)

Since 0 < -r < 7r and 0 < -y < 7r. there are two possible solutions, namely

T - 2 (D.5)7r (D.6)2

r -2 (D.6)

Observe that the tilt direction is one of the axes of smmetry tqf the rhombus
shon in Figure 8.

laving sohlcd for the tilt, we no% solve for the extremi/ing slant a using
FEq. 4.23. Recalling from Eq. ).4 that sin 2(7 - _Y) = Sin 2

.r, wc find upon
substitution into -q. 4.23

1{l- sin 2 o sin 2 r1 - cos 2 {I - sin 2 a sin 2
T, (l).7)
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which we sole to get

Cs2 Cos 
2 T

cos2 U . . (D.8)
sin 2 Tr

h'le requiremcnt that Icosca < 1 picks out either Equation ().5) or ().6),
so we get a unique solution. In this case the skeA angle is gi~cn by

7r6 = - (D.9)
2

To summarize, if 6 < 0 we get

7r 6
4 2 (D.10)

1 + sin 6
cos 6

and if 6 > 0,

3r 6
4 2 (D.11)
Cos 6

COS " I + sin 6'

Thesc formulae were derivcd for an equal-sided parallelogram but they will
clearly apply to the more general case and a rotation through the angles given
by Fquations (1). 10) and ( I). II) will unskew any symmetry. It should be noted
that T is taken tki be ICro on the axis of sYmmetrY, as in FiguTe S.
To conclud, this Appendix, we consider the case that the second factor in

Eq. (I).2) is zero and the first factor non-zero. We introduce the angle V by
analog) with Eq. (2.1) defining orthographic projection:

tan2 ip = cos2 a tan2 (y - r) (D.12)

Then

sin 2 (,1 - ) - tan 2 P
cos 2 a + tan2  (D2 (D.13)

cos 2( - ) = Cos
cos 2 a + tan2 4P

where, without loss of generality, we suppose 0 < V) < 7r/2. Now by
assumption, the second factor in Fq. (I).2) is zero:

cos 2 r + cos 2(y -- r) + sin 2 asin2 rsin2 (y - r) - 1 = 0 (D.14)
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Figure 8
A typical skew symmetric figure. namely a rhombus of side a and included angle y. with
skew angle 6 i - -Y. The tilt direction is aligned with one of the axes of symmetry
of the rhombus. determined by the angle 6.

Using Fq. (l).13), we find

tan2 rtan2 
, 1,

from which we deduce

sin r = cos io
(D.15)

costr = g sin 1 ± = t1,

since the ranges of the %ariables can be assumed to be 0 < c < v/2; 0 <
r < 7;0 < 0 < r/2;0 < 7' < 7r. From |q. (D.13) we find that

v, tan 0 cos cr
sin(-y - r) cos(-y - r) = , -, - ta = 1, (D.16)

cos
2 a + tan

2 V

and, since sin r cos r has the same sign as sin(-y - r) cos(-y - r). = v. From

Eq. (Dl.) we deduce

sin r cos r - sin(- - ) cos('y - r)

I i 2 2 2 2(,
1-sinosin r7 1-sin asin (y-r) (D.17)

v sin ?P cog ?P

1-sin2 acos 2 v
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So far in this Appendix we have onl used one of the constraints derived in
Section 4. namely Eq. (4.24) (from which we derived Eq. (i).1)). We now use
the second constraint Eq. (4.23), which we can write in the form

2 cos2 r
sin ~ (1 - sin2 a 2r)

(I - sin 2 a sin2 r)

2 cos 2(y-r) (D.18)

( - sin2 o sin2( _T))| 0

After some algebraic manipulation, we deduce

cos a =-- tan2 P,

from which it follows that cos o is negative, which is impossible in the range
under consideration.
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